TRANSPORT IS THE BIGGEST SOURCE OF GREENHOUSE GAS EMISSIONS IN BC

All emissions in BC by sector (2014)

- Deforestation
- Industrial processes
- Agriculture
- Waste
- Fugitive sources (NG)
- Stationary combustion
- Road (25%)
- Other (13%)

GHG emissions change since 2007

- All trucks +13.5%
- Passenger vehicles -4.8%
- Buses -16%

PASSENGER - 12% OF GHGs
- 0.78%
- 5.43%
- 5.75%

FREIGHT - 13% OF GHGs
- 2.33%
- 6.83%
- 4.19%

HOW MUCH DO WE NEED TO CUT EMISSIONS IN THE TRUCKING SECTOR?

To meet the province’s overall legislated GHG emissions reduction target of 80% by 2050, the road freight sector must cut its emissions by 64% by 2040. Analysis of the requirements of electrification of trucking depends upon GDP projections, electricity forecasts and natural gas production and demand in BC, which were only available until 2040.

WHY DO WE CARE ABOUT 2040? ELECTRIFICATION OPTIONS

Legislated emissions trajectory

- Battery electric: low energy intensity, very long charging time, need carbon capture & storage (CCS), low range, weight, and temperature challenges
- Fuel-cell/hydrogen from electrolysis: high energy intensity, no charging time, need carbon capture & storage (CCS), high range, weight, and temperature challenges
- Fuel-cell/hydrogen from natural gas: medium energy intensity, no charging time, need carbon capture & storage (CCS), medium range, weight, and temperature challenges
HOW MUCH ELECTRICITY DO WE NEED TO DO THIS?

The proportion of the truck stock needed to be all-electric of all classes, either battery electric or fuel-cell-electric, by 2040 is at least 65%.

OF ALL TRUCKS ELECTRIC BY 2040

Annual truck sales vary between 5% and 7% of the total stock. So this means that to achieve that 65% penetration rate by 2040, as early as 2025, all new sales need to be of electric trucks, regardless of type.

OF ALL NEW TRUCKS SOLD ELECTRIC BY 2025

HOW MUCH ELECTRICITY DO WE NEED TO DO THIS?

Electricity generation requirement for 64% trucking decarbonization by 2040

- **BATTERY-ELECTRIC:**
 - Lower bound: +20% of current electricity generation in BC
 - Upper bound: +55% of current electricity generation in BC

Production of hydrogen by electrolysis, or the splitting of water into its component hydrogen and oxygen atoms by passing an electric current through the water, uses a lot of electricity. Hydrogen then needs to be pressurised and transported, processes that also require electricity or some other clean energy.

Production of hydrogen by ‘cracking’ natural gas instead of electrolysis requires less electricity. But this produces greenhouse gases and thus would need to be coupled with carbon, capture and storage (CCS) technologies.

WHY SO MUCH ELECTRICITY FOR FUEL CELLS?